The Role of Nickel in Hydrogen Pick-up During In-reactor Corrosion of Zirconium Alloys

The Role of Nickel in Hydrogen Pick-up During In-reactor Corrosion of Zirconium Alloys
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : OCLC:1005123001
ISBN-13 :
Rating : 4/5 ( Downloads)

Book Synopsis The Role of Nickel in Hydrogen Pick-up During In-reactor Corrosion of Zirconium Alloys by : Aditya Shivprasad

Download or read book The Role of Nickel in Hydrogen Pick-up During In-reactor Corrosion of Zirconium Alloys written by Aditya Shivprasad and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydrogen pick-up of zirconium-based fuel cladding and structural materials duringin-reactor corrosion can degrade fuel component performance in existing light waterreactors (LWRs) and advanced nuclear reactors, such as the LWR-like supercriticalwater reactors (SCWRs), as the ingress of corrosion hydrogen can lead to the formationof brittle hydrides. In the boiling water reactor (BWR) environment, Zircaloy-2 fuelcladding and reactor core components, such as water rods and channel boxes, canexperience accelerated hydrogen pick-up (higher pickup fraction) at high burnup whenexposed for one extra 24-month cycle, while Zircaloy-4 components under similarconditions do not. Because the principal difference between the two alloys is thatZircaloy-2 contains nickel, this accelerated hydrogen pick-up has been hypothesizedto result from the presence of nickel and its role in the corrosion process whenincorporated into the protective oxide layer.Zircaloy-2 and Zircaloy-4 sister samples were corroded in 360 _C water and anadditional set of Zircaloy-2 samples was corroded in 400 _C steam. Total weightgain, assumed to be due mostly to oxygen, and hydrogen content were measured asfunctions of exposure time. The results indicate that Zircaloy-2 samples absorbed morehydrogen than did Zircaloy-4 samples on the basis of total weight gain (hydrogen pickupfraction), though both exhibited similar corrosion kinetics parameters. Microbeamsynchrotron radiation X-ray absorption near-edge spectroscopy (XANES) of selectedZircaloy-2 samples at the Advanced Photon Source (APS) was used to probe theoxidation states of nickel and iron in these materials and understand the evolutionof the oxidation states of these alloying elements as functions of distance from theoxide/metal interface. Result showed that a significant fraction of nickel atomsremained metallic upon incorporation in the oxide layer. In contrast, iron atomsoxidized much earlier than did nickel atoms and, in most cases, fully oxidized withinseveral micrometers from the oxide/metal interface. A general hypothesis was madethat metallic nickel in contact with the coolant may catalyze the surface reactionsinvolved in the hydrogen pick-up mechanism.To understand accelerated hydrogen pick-up of certain Zircaloy-2 samples at highburn-up, additional XANES examinations were performed on Zircaloy-2 water rodsexposed in-reactor to high burn-up in commercial BWRs. The first set of samples wascorroded in the Limerick-1 reactor, while the second set was corroded in the Dresden-2reactor. Within each set of samples, fluences, oxide thicknesses, and sample elevationswere similar, but hydrogen pick-up fractions were vastly different. In the first setof samples, oxide thicknesses ranged from 28 - 35 m, but hydrogen pick-up rangedbetween 15 and 51%. In the second set of samples, oxide thicknesses ranged between3.5 m and 16 m, but hydrogen pick-up ranged from 28 - 69%. All samples wereirradiated to fluences between 9.4 and 13.1 1021 n/cm2 for neutron energies above1 MeV. Results of XANES examinations showed a similar correlation between thedelayed oxidation of nickel and higher hydrogen pick-up of Zircaloy-2 at high burn-up.A significant fraction (greater than 30%) of nickel atoms were found to be in themetallic state in the porous oxide layer. It was hypothesized that this metallic nickelis responsible for enhancing hydrogen pick-up by catalyzing the surface reactions thataffect the overall hydrogen pick-up reaction. This would allow for easier absorptionof hydrogen into the protective oxide layer from the coolant. Ab initio modeling ofXANES of selected iron- and nickel-containing compounds was also performed andcompared to experimental results to help understand how different populations ofalloying elements oxidized upon incorporation into the oxide layer.A concurrent study of the microstructure of oxide layers formed on these sameirradiated water rods was performed to understand if there was a characteristicmicrostructure associated with accelerated hydrogen pick-up. Microbeam X-raydiffraction (XRD) at the APS was performed on water rod samples to study oxidetexture, phase content, and grain size. A similar examination was performed onsteam-corroded Zircaloy-2 to serve as a comparison. Results showed that the oxidelayers formed on these samples consisted primarily of highly-oriented monoclinic phasezirconium oxide with a small fraction of tetragonal phase oxide. Monoclinic phasegrains were shown to grow as a function of distance from the oxide/metal interface,while tetragonal phase grains remained a constant size, indicating a tetragonal-to-monoclinic phase transformation above a critical grain size of approximately 10 nm.The tetragonal phase fraction was also calculated and observed to maximize nearthe oxide/metal interface, coinciding with the appearance of the (002)-tetragonalphase diffraction reflection, which appeared to be highly-oriented and strained, butdisappeared away from the oxide/metal interface. Findings were consistent withprevious microbeam XRD examinations of oxide layers formed on Zircaloy-4 underautoclave conditions. Transmission XRD examinations were also performed on aselected steam-corroded sample to serve as an additional comparison.The observations presented in this study helped to propose a mechanism foroxidation of different populations of iron and nickel upon incorporation into theZircaloy-2 oxide layer and the effect on the hydrogen pick-up mechanism.


The Role of Nickel in Hydrogen Pick-up During In-reactor Corrosion of Zirconium Alloys Related Books