The Hermitian Two Matrix Model with an Even Quartic Potential

The Hermitian Two Matrix Model with an Even Quartic Potential
Author :
Publisher : American Mathematical Soc.
Total Pages : 118
Release :
ISBN-10 : 9780821869284
ISBN-13 : 0821869280
Rating : 4/5 (280 Downloads)

Book Synopsis The Hermitian Two Matrix Model with an Even Quartic Potential by : Maurice Duits

Download or read book The Hermitian Two Matrix Model with an Even Quartic Potential written by Maurice Duits and published by American Mathematical Soc.. This book was released on 2012 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors consider the two matrix model with an even quartic potential $W(y)=y^4/4+\alpha y^2/2$ and an even polynomial potential $V(x)$. The main result of the paper is the formulation of a vector equilibrium problem for the limiting mean density for the eigenvalues of one of the matrices $M_1$. The vector equilibrium problem is defined for three measures, with external fields on the first and third measures and an upper constraint on the second measure. The proof is based on a steepest descent analysis of a $4\times4$ matrix valued Riemann-Hilbert problem that characterizes the correlation kernel for the eigenvalues of $M_1$. The authors' results generalize earlier results for the case $\alpha=0$, where the external field on the third measure was not present.


The Hermitian Two Matrix Model with an Even Quartic Potential Related Books