Statistical Learning for Big Dependent Data

Statistical Learning for Big Dependent Data
Author :
Publisher : John Wiley & Sons
Total Pages : 562
Release :
ISBN-10 : 9781119417385
ISBN-13 : 1119417384
Rating : 4/5 (384 Downloads)

Book Synopsis Statistical Learning for Big Dependent Data by : Daniel Peña

Download or read book Statistical Learning for Big Dependent Data written by Daniel Peña and published by John Wiley & Sons. This book was released on 2021-05-04 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master advanced topics in the analysis of large, dynamically dependent datasets with this insightful resource Statistical Learning with Big Dependent Data delivers a comprehensive presentation of the statistical and machine learning methods useful for analyzing and forecasting large and dynamically dependent data sets. The book presents automatic procedures for modelling and forecasting large sets of time series data. Beginning with some visualization tools, the book discusses procedures and methods for finding outliers, clusters, and other types of heterogeneity in big dependent data. It then introduces various dimension reduction methods, including regularization and factor models such as regularized Lasso in the presence of dynamical dependence and dynamic factor models. The book also covers other forecasting procedures, including index models, partial least squares, boosting, and now-casting. It further presents machine-learning methods, including neural network, deep learning, classification and regression trees and random forests. Finally, procedures for modelling and forecasting spatio-temporal dependent data are also presented. Throughout the book, the advantages and disadvantages of the methods discussed are given. The book uses real-world examples to demonstrate applications, including use of many R packages. Finally, an R package associated with the book is available to assist readers in reproducing the analyses of examples and to facilitate real applications. Analysis of Big Dependent Data includes a wide variety of topics for modeling and understanding big dependent data, like: New ways to plot large sets of time series An automatic procedure to build univariate ARMA models for individual components of a large data set Powerful outlier detection procedures for large sets of related time series New methods for finding the number of clusters of time series and discrimination methods , including vector support machines, for time series Broad coverage of dynamic factor models including new representations and estimation methods for generalized dynamic factor models Discussion on the usefulness of lasso with time series and an evaluation of several machine learning procedure for forecasting large sets of time series Forecasting large sets of time series with exogenous variables, including discussions of index models, partial least squares, and boosting. Introduction of modern procedures for modeling and forecasting spatio-temporal data Perfect for PhD students and researchers in business, economics, engineering, and science: Statistical Learning with Big Dependent Data also belongs to the bookshelves of practitioners in these fields who hope to improve their understanding of statistical and machine learning methods for analyzing and forecasting big dependent data.


Statistical Learning for Big Dependent Data Related Books

Statistical Learning for Big Dependent Data
Language: en
Pages: 562
Authors: Daniel Peña
Categories: Mathematics
Type: BOOK - Published: 2021-05-04 - Publisher: John Wiley & Sons

GET EBOOK

Master advanced topics in the analysis of large, dynamically dependent datasets with this insightful resource Statistical Learning with Big Dependent Data deliv
Statistical Learning for Big Dependent Data
Language: en
Pages: 562
Authors: Daniel Peña
Categories: Mathematics
Type: BOOK - Published: 2021-03-16 - Publisher: John Wiley & Sons

GET EBOOK

Master advanced topics in the analysis of large, dynamically dependent datasets with this insightful resource Statistical Learning with Big Dependent Data deliv
Statistical Foundations of Data Science
Language: en
Pages: 974
Authors: Jianqing Fan
Categories: Mathematics
Type: BOOK - Published: 2020-09-21 - Publisher: CRC Press

GET EBOOK

Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques
Statistical Learning with Sparsity
Language: en
Pages: 354
Authors: Trevor Hastie
Categories: Business & Economics
Type: BOOK - Published: 2015-05-07 - Publisher: CRC Press

GET EBOOK

Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is
Geocomputation with R
Language: en
Pages: 354
Authors: Robin Lovelace
Categories: Mathematics
Type: BOOK - Published: 2019-03-22 - Publisher: CRC Press

GET EBOOK

Geocomputation with R is for people who want to analyze, visualize and model geographic data with open source software. It is based on R, a statistical programm