Proposed Framework for Thermomechanical Fatigue (TMF) Life Prediction of Metal Matrix Composites (MMCs)

Proposed Framework for Thermomechanical Fatigue (TMF) Life Prediction of Metal Matrix Composites (MMCs)
Author :
Publisher :
Total Pages : 19
Release :
ISBN-10 : OCLC:1251667694
ISBN-13 :
Rating : 4/5 ( Downloads)

Book Synopsis Proposed Framework for Thermomechanical Fatigue (TMF) Life Prediction of Metal Matrix Composites (MMCs) by : VK. Arya

Download or read book Proposed Framework for Thermomechanical Fatigue (TMF) Life Prediction of Metal Matrix Composites (MMCs) written by VK. Arya and published by . This book was released on 1993 with total page 19 pages. Available in PDF, EPUB and Kindle. Book excerpt: The framework of a mechanics of materials model is proposed for thermomechanical fatigue (TMF) life prediction of unidirectional, continuous-fiber metal matrix composites (MMCs). Axially loaded MMC test samples are analyzed as structural components whose fatigue lives are governed by local stress-strain conditions resulting from combined interactions of the matrix, interfacial layer, and fiber constituents. The metallic matrix is identified as the vehicle for tracking fatigue crack initiation and propagation. The proposed framework has three major elements. First, TMF flow and failure characteristics of in situ matrix material are approximated from tests of unreinforced matrix material, and matrix TMF life prediction equations are numerically calibrated. The macrocrack initiation fatigue life of the matrix material is divided into microcrack initiation and microcrack propagation phases. Second, the influencing factors created by the presence of fibers and interfaces are analyzed, characterized, and documented in equation form. Some of the influences act on the microcrack initiation portion of the matrix fatigue life, others on the microcrack propagation life, while some affect both. Influencing factors include coefficient of thermal expansion mismatch strains, residual (mean) stresses, multiaxial stress states, off-axis fibers, internal stress concentrations, multiple initiation sites, nonuniform fiber spacing, fiber debonding, interfacial layers and cracking, fractured fibers, fiber deflections of crack fronts, fiber bridging of matrix cracks, and internal oxidation along internal interfaces. Equations exist for some, but not all, of the currently identified influencing factors. The third element is the inclusion of overriding influences such as maximum tensile strain limits of brittle fibers that could cause local fractures and ensuing catastrophic failure of surrounding matrix material. Some experimental data exist for assessing the veracity of the proposed framework.


Proposed Framework for Thermomechanical Fatigue (TMF) Life Prediction of Metal Matrix Composites (MMCs) Related Books

Proposed Framework for Thermomechanical Fatigue (TMF) Life Prediction of Metal Matrix Composites (MMCs)
Language: en
Pages: 19
Authors: VK. Arya
Categories: Alloys
Type: BOOK - Published: 1993 - Publisher:

GET EBOOK

The framework of a mechanics of materials model is proposed for thermomechanical fatigue (TMF) life prediction of unidirectional, continuous-fiber metal matrix
Proposed Framework for Thermomechanical Life Modeling of Metal Matrix Composites
Language: en
Pages: 20
Authors: Gary R. Halford
Categories: Metallic composites
Type: BOOK - Published: 1993 - Publisher:

GET EBOOK

Thermomechanical fatigue behavior of materials
Language: en
Pages: 382
Authors: Michael J. Verrilli
Categories:
Type: BOOK - Published: 1996 - Publisher: ASTM International

GET EBOOK

Life Prediction Methodology for Titanium Matrix Composites
Language: en
Pages: 625
Authors: W. Steven Johnson
Categories: Metallic composites
Type: BOOK - Published: 1996 - Publisher: ASTM International

GET EBOOK

Papers presented at the March 1994 symposium are organized into five sections that progress from basic understanding of mechanical damage mechanisms and environ
Thermomechanical Fatigue Behavior of Materials
Language: en
Pages: 259
Authors: Huseyin Sehitoglu
Categories: AIIoys
Type: BOOK - Published: 1993 - Publisher: ASTM International

GET EBOOK