Optimal Structural Design under Stability Constraints

Optimal Structural Design under Stability Constraints
Author :
Publisher : Springer Science & Business Media
Total Pages : 480
Release :
ISBN-10 : 9789400927544
ISBN-13 : 9400927541
Rating : 4/5 (541 Downloads)

Book Synopsis Optimal Structural Design under Stability Constraints by : Antoni Gajewski

Download or read book Optimal Structural Design under Stability Constraints written by Antoni Gajewski and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first optimal design problem for an elastic column subject to buckling was formulated by Lagrange over 200 years ago. However, rapid development of structural optimization under stability constraints occurred only in the last twenty years. In numerous optimal structural design problems the stability phenomenon becomes one of the most important factors, particularly for slender and thin-walled elements of aerospace structures, ships, precision machines, tall buildings etc. In engineering practice stability constraints appear more often than it might be expected; even when designing a simple beam of constant width and variable depth, the width - if regarded as a design variable - is finally determined by a stability constraint (lateral stability). Mathematically, optimal structural design under stability constraints usually leads to optimization with respect to eigenvalues, but some cases fall even beyond this type of problems. A total of over 70 books has been devoted to structural optimization as yet, but none of them has treated stability constraints in a sufficiently broad and comprehensive manner. The purpose of the present book is to fill this gap. The contents include a discussion of the basic structural stability and structural optimization problems and the pertinent solution methods, followed by a systematic review of solutions obtained for columns, arches, bar systems, plates, shells and thin-walled bars. A unified approach based on Pontryagin's maximum principle is employed inasmuch as possible, at least to problems of columns, arches and plates. Parametric optimization is discussed as well.


Optimal Structural Design under Stability Constraints Related Books

Optimal Structural Design under Stability Constraints
Language: en
Pages: 480
Authors: Antoni Gajewski
Categories: Science
Type: BOOK - Published: 2012-12-06 - Publisher: Springer Science & Business Media

GET EBOOK

The first optimal design problem for an elastic column subject to buckling was formulated by Lagrange over 200 years ago. However, rapid development of structur
Elements of Structural Optimization
Language: en
Pages: 481
Authors: Raphael T. Haftka
Categories: Technology & Engineering
Type: BOOK - Published: 2012-12-06 - Publisher: Springer Science & Business Media

GET EBOOK

The field of structural optimization is still a relatively new field undergoing rapid changes in methods and focus. Until recently there was a severe imbalance
Optimal Structural Design under Stability Constraints
Language: en
Pages: 470
Authors: Antoni Gajewski
Categories: Science
Type: BOOK - Published: 2011-10-18 - Publisher: Springer

GET EBOOK

The first optimal design problem for an elastic column subject to buckling was formulated by Lagrange over 200 years ago. However, rapid development of structur
Engineering Optimization in Design Processes
Language: en
Pages: 358
Authors: Hans A. Eschenauer
Categories: Technology & Engineering
Type: BOOK - Published: 2012-12-06 - Publisher: Springer Science & Business Media

GET EBOOK

These proceedings contain the texts of 37 contributions presented at the International Conference on Engineering Optimization in an Industrial Environment, whic
Recent Advances in Optimal Structural Design
Language: en
Pages: 396
Authors: Scott A. Burns
Categories: Technology & Engineering
Type: BOOK - Published: 2002-01-01 - Publisher: ASCE Publications

GET EBOOK

Sponsored by the Technical Committee on Structural Design of the Technical Administrative Committee on Analysis and Computation of the Technical Activities Divi