Neural Computation in Hopfield Networks and Boltzmann Machines

Neural Computation in Hopfield Networks and Boltzmann Machines
Author :
Publisher : University of Delaware Press
Total Pages : 310
Release :
ISBN-10 : 0874134641
ISBN-13 : 9780874134643
Rating : 4/5 (643 Downloads)

Book Synopsis Neural Computation in Hopfield Networks and Boltzmann Machines by : James P. Coughlin

Download or read book Neural Computation in Hopfield Networks and Boltzmann Machines written by James P. Coughlin and published by University of Delaware Press. This book was released on 1995 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: "One hundred years ago, the fundamental building block of the central nervous system, the neuron, was discovered. This study focuses on the existing mathematical models of neurons and their interactions, the simulation of which has been one of the biggest challenges facing modern science." "More than fifty years ago, W. S. McCulloch and W. Pitts devised their model for the neuron, John von Neumann seemed to sense the possibilities for the development of intelligent systems, and Frank Rosenblatt came up with a functioning network of neurons. Despite these advances, the subject had begun to fade as a major research area until John Hopfield arrived on the scene. Drawing an analogy between neural networks and the Ising spin models of ferromagnetism, Hopfield was able to introduce a "computational energy" that would decline toward stable minima under the operation of the system of neurodynamics devised by Roy Glauber." "Like a switch, a neuron is said to be either "on" or "off." The state of the neuron is determined by the states of the other neurons and the connections between them, and the connections are assumed to be reciprocal - that is, neuron number one influences neuron number two exactly as strongly as neuron number two influences neuron number one. According to the Glauber dynamics, the states of the neurons are updated in a random serial way until an equilibrium is reached. An energy function can be associated with each state, and equilibrium corresponds to a minimum of this energy. It follows from Hopfield's assumption of reciprocity that an equilibrium will always be reached." "D. H. Ackley, G. E. Hinton, and T. J. Sejnowski modified the Hopfield network by introducing the simulated annealing algorithm to search out the deepest minima. This is accomplished by - loosely speaking - shaking the machine. The violence of the shaking is controlled by a parameter called temperature, producing the Boltzmann machine - a name designed to emphasize the connection to the statistical physics of Ising spin models." "The Boltzmann machine reduces to the Hopfield model in the special case where the temperature goes to zero. The resulting network, under the Glauber dynamics, produces a homogeneous, irreducible, aperiodic Markov chain as it wanders through state space. The entire theory of Markov chains becomes applicable to the Boltzmann machine." "With ten chapters, five appendices, a list of references, and an index, this study should serve as an introduction to the field of neural networks and its application, and is suitable for an introductory graduate course or an advanced undergraduate course."--BOOK JACKET.Title Summary field provided by Blackwell North America, Inc. All Rights Reserved


Neural Computation in Hopfield Networks and Boltzmann Machines Related Books

Neural Computation in Hopfield Networks and Boltzmann Machines
Language: en
Pages: 310
Authors: James P. Coughlin
Categories: Computers
Type: BOOK - Published: 1995 - Publisher: University of Delaware Press

GET EBOOK

"One hundred years ago, the fundamental building block of the central nervous system, the neuron, was discovered. This study focuses on the existing mathematica
Neural Networks: Tricks of the Trade
Language: en
Pages: 753
Authors: Grégoire Montavon
Categories: Computers
Type: BOOK - Published: 2012-11-14 - Publisher: Springer

GET EBOOK

The twenty last years have been marked by an increase in available data and computing power. In parallel to this trend, the focus of neural network research and
Operations Research
Language: en
Pages: 414
Authors: Michael W. Carter
Categories: Technology & Engineering
Type: BOOK - Published: 2017-12-19 - Publisher: CRC Press

GET EBOOK

Students with diverse backgrounds will face a multitude of decisions in a variety of engineering, scientific, industrial, and financial settings. They will need
Handbook of Neural Computing Applications
Language: en
Pages: 472
Authors: Alianna J. Maren
Categories: Computers
Type: BOOK - Published: 2014-05-10 - Publisher: Academic Press

GET EBOOK

Handbook of Neural Computing Applications is a collection of articles that deals with neural networks. Some papers review the biology of neural networks, their
Machine Learning with Neural Networks
Language: en
Pages: 262
Authors: Bernhard Mehlig
Categories: Science
Type: BOOK - Published: 2021-10-28 - Publisher: Cambridge University Press

GET EBOOK

This modern and self-contained book offers a clear and accessible introduction to the important topic of machine learning with neural networks. In addition to d