Linear Algebra and Learning from Data

Linear Algebra and Learning from Data
Author :
Publisher : Wellesley-Cambridge Press
Total Pages : 0
Release :
ISBN-10 : 0692196382
ISBN-13 : 9780692196380
Rating : 4/5 (380 Downloads)

Book Synopsis Linear Algebra and Learning from Data by : Gilbert Strang

Download or read book Linear Algebra and Learning from Data written by Gilbert Strang and published by Wellesley-Cambridge Press. This book was released on 2019-01-31 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special matrices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation.


Linear Algebra and Learning from Data Related Books

Linear Algebra and Learning from Data
Language: en
Pages: 0
Authors: Gilbert Strang
Categories: Computers
Type: BOOK - Published: 2019-01-31 - Publisher: Wellesley-Cambridge Press

GET EBOOK

Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes
Linear Algebra and Optimization for Machine Learning
Language: en
Pages: 507
Authors: Charu C. Aggarwal
Categories: Computers
Type: BOOK - Published: 2020-05-13 - Publisher: Springer Nature

GET EBOOK

This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout the book. A solution
Mathematics for Machine Learning
Language: en
Pages: 392
Authors: Marc Peter Deisenroth
Categories: Computers
Type: BOOK - Published: 2020-04-23 - Publisher: Cambridge University Press

GET EBOOK

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, opti
Basics of Linear Algebra for Machine Learning
Language: en
Pages: 211
Authors: Jason Brownlee
Categories: Computers
Type: BOOK - Published: 2018-01-24 - Publisher: Machine Learning Mastery

GET EBOOK

Linear algebra is a pillar of machine learning. You cannot develop a deep understanding and application of machine learning without it. In this laser-focused Eb
Introduction to Applied Linear Algebra
Language: en
Pages: 477
Authors: Stephen Boyd
Categories: Business & Economics
Type: BOOK - Published: 2018-06-07 - Publisher: Cambridge University Press

GET EBOOK

A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.