Knowledge Guided Machine Learning

Knowledge Guided Machine Learning
Author :
Publisher : CRC Press
Total Pages : 612
Release :
ISBN-10 : 9781000598131
ISBN-13 : 1000598136
Rating : 4/5 (136 Downloads)

Book Synopsis Knowledge Guided Machine Learning by : Anuj Karpatne

Download or read book Knowledge Guided Machine Learning written by Anuj Karpatne and published by CRC Press. This book was released on 2022-08-15 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Given their tremendous success in commercial applications, machine learning (ML) models are increasingly being considered as alternatives to science-based models in many disciplines. Yet, these "black-box" ML models have found limited success due to their inability to work well in the presence of limited training data and generalize to unseen scenarios. As a result, there is a growing interest in the scientific community on creating a new generation of methods that integrate scientific knowledge in ML frameworks. This emerging field, called scientific knowledge-guided ML (KGML), seeks a distinct departure from existing "data-only" or "scientific knowledge-only" methods to use knowledge and data at an equal footing. Indeed, KGML involves diverse scientific and ML communities, where researchers and practitioners from various backgrounds and application domains are continually adding richness to the problem formulations and research methods in this emerging field. Knowledge Guided Machine Learning: Accelerating Discovery using Scientific Knowledge and Data provides an introduction to this rapidly growing field by discussing some of the common themes of research in KGML using illustrative examples, case studies, and reviews from diverse application domains and research communities as book chapters by leading researchers. KEY FEATURES First-of-its-kind book in an emerging area of research that is gaining widespread attention in the scientific and data science fields Accessible to a broad audience in data science and scientific and engineering fields Provides a coherent organizational structure to the problem formulations and research methods in the emerging field of KGML using illustrative examples from diverse application domains Contains chapters by leading researchers, which illustrate the cutting-edge research trends, opportunities, and challenges in KGML research from multiple perspectives Enables cross-pollination of KGML problem formulations and research methods across disciplines Highlights critical gaps that require further investigation by the broader community of researchers and practitioners to realize the full potential of KGML


Knowledge Guided Machine Learning Related Books

Knowledge Guided Machine Learning
Language: en
Pages: 612
Authors: Anuj Karpatne
Categories: Business & Economics
Type: BOOK - Published: 2022-08-15 - Publisher: CRC Press

GET EBOOK

Given their tremendous success in commercial applications, machine learning (ML) models are increasingly being considered as alternatives to science-based model
Knowledge Guided Machine Learning
Language: en
Pages: 442
Authors: Anuj Karpatne
Categories: Business & Economics
Type: BOOK - Published: 2022-08-15 - Publisher: CRC Press

GET EBOOK

Given their tremendous success in commercial applications, machine learning (ML) models are increasingly being considered as alternatives to science-based model
Machine Learning and Principles and Practice of Knowledge Discovery in Databases
Language: en
Pages: 594
Authors: Rosa Meo
Categories:
Type: BOOK - Published: - Publisher: Springer Nature

GET EBOOK

Machine Learning for Low-Latency Communications
Language: en
Pages: 218
Authors: Yong Zhou
Categories: Technology & Engineering
Type: BOOK - Published: 2024-10-10 - Publisher: Elsevier

GET EBOOK

Machine Learning for Low-Latency Communications presents the principles and practice of various deep learning methodologies for mitigating three critical latenc
Discovery Science
Language: en
Pages: 725
Authors: Albert Bifet
Categories: Computers
Type: BOOK - Published: 2023-10-07 - Publisher: Springer Nature

GET EBOOK

This book constitutes the proceedings of the 26th International Conference on Discovery Science, DS 2023, which took place in Porto, Portugal, in October 2023.