Flat Rank Two Vector Bundles on Genus Two Curves

Flat Rank Two Vector Bundles on Genus Two Curves
Author :
Publisher : American Mathematical Soc.
Total Pages : 116
Release :
ISBN-10 : 9781470435660
ISBN-13 : 1470435667
Rating : 4/5 (667 Downloads)

Book Synopsis Flat Rank Two Vector Bundles on Genus Two Curves by : Viktoria Heu

Download or read book Flat Rank Two Vector Bundles on Genus Two Curves written by Viktoria Heu and published by American Mathematical Soc.. This book was released on 2019-06-10 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors study the moduli space of trace-free irreducible rank 2 connections over a curve of genus 2 and the forgetful map towards the moduli space of underlying vector bundles (including unstable bundles), for which they compute a natural Lagrangian rational section. As a particularity of the genus case, connections as above are invariant under the hyperelliptic involution: they descend as rank logarithmic connections over the Riemann sphere. The authors establish explicit links between the well-known moduli space of the underlying parabolic bundles with the classical approaches by Narasimhan-Ramanan, Tyurin and Bertram. This allows the authors to explain a certain number of geometric phenomena in the considered moduli spaces such as the classical -configuration of the Kummer surface. The authors also recover a Poincaré family due to Bolognesi on a degree 2 cover of the Narasimhan-Ramanan moduli space. They explicitly compute the Hitchin integrable system on the moduli space of Higgs bundles and compare the Hitchin Hamiltonians with those found by van Geemen-Previato. They explicitly describe the isomonodromic foliation in the moduli space of vector bundles with -connection over curves of genus 2 and prove the transversality of the induced flow with the locus of unstable bundles.


Flat Rank Two Vector Bundles on Genus Two Curves Related Books