Derived Functors in Functional Analysis

Derived Functors in Functional Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 74
Release :
ISBN-10 : 3540002367
ISBN-13 : 9783540002369
Rating : 4/5 (369 Downloads)

Book Synopsis Derived Functors in Functional Analysis by : Jochen Wengenroth

Download or read book Derived Functors in Functional Analysis written by Jochen Wengenroth and published by Springer Science & Business Media. This book was released on 2003-04-10 with total page 74 pages. Available in PDF, EPUB and Kindle. Book excerpt: The text contains for the first time in book form the state of the art of homological methods in functional analysis like characterizations of the vanishing of the derived projective limit functor or the functors Ext1 (E, F) for Fréchet and more general spaces. The researcher in real and complex analysis finds powerful tools to solve surjectivity problems e.g. on spaces of distributions or to characterize the existence of solution operators. The requirements from homological algebra are minimized: all one needs is summarized on a few pages. The answers to several questions of V.P. Palamodov who invented homological methods in analysis also show the limits of the program.


Derived Functors in Functional Analysis Related Books

Derived Functors in Functional Analysis
Language: en
Pages: 74
Authors: Jochen Wengenroth
Categories: Mathematics
Type: BOOK - Published: 2003-04-10 - Publisher: Springer Science & Business Media

GET EBOOK

The text contains for the first time in book form the state of the art of homological methods in functional analysis like characterizations of the vanishing of
Quantum Independent Increment Processes II
Language: en
Pages: 364
Authors: Ole E. Barndorff-Nielsen
Categories: Distribution
Type: BOOK - Published: 2006 - Publisher: Springer Science & Business Media

GET EBOOK

Lectures given at the school "Quantum Independent Increment Processes: Structure and Applications to Physics" held at the Alfried-Krupp-Wissenschaftskolleg in G
Mathematical Foundation of Turbulent Viscous Flows
Language: en
Pages: 280
Authors: P. Constantin
Categories: Mathematics
Type: BOOK - Published: 2006-01-10 - Publisher: Springer Science & Business Media

GET EBOOK

Constantin presents the Euler equations of ideal incompressible fluids and the blow-up problem for the Navier-Stokes equations of viscous fluids, describing maj
Simplicial Complexes of Graphs
Language: en
Pages: 376
Authors: Jakob Jonsson
Categories: Mathematics
Type: BOOK - Published: 2007-12-10 - Publisher: Springer

GET EBOOK

A graph complex is a finite family of graphs closed under deletion of edges. Graph complexes show up naturally in many different areas of mathematics. Identifyi
From Hahn-Banach to Monotonicity
Language: en
Pages: 251
Authors: Stephen Simons
Categories: Mathematics
Type: BOOK - Published: 2008-02-13 - Publisher: Springer Science & Business Media

GET EBOOK

This new edition of LNM 1693 aims to reduce questions on monotone multifunctions to questions on convex functions. However, rather than using a "big convexifica