Deep Learning Quick Reference

Deep Learning Quick Reference
Author :
Publisher : Packt Publishing Ltd
Total Pages : 261
Release :
ISBN-10 : 9781788838917
ISBN-13 : 1788838912
Rating : 4/5 (912 Downloads)

Book Synopsis Deep Learning Quick Reference by : Michael Bernico

Download or read book Deep Learning Quick Reference written by Michael Bernico and published by Packt Publishing Ltd. This book was released on 2018-03-09 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dive deeper into neural networks and get your models trained, optimized with this quick reference guide Key Features A quick reference to all important deep learning concepts and their implementations Essential tips, tricks, and hacks to train a variety of deep learning models such as CNNs, RNNs, LSTMs, and more Supplemented with essential mathematics and theory, every chapter provides best practices and safe choices for training and fine-tuning your models in Keras and Tensorflow. Book Description Deep learning has become an essential necessity to enter the world of artificial intelligence. With this book deep learning techniques will become more accessible, practical, and relevant to practicing data scientists. It moves deep learning from academia to the real world through practical examples. You will learn how Tensor Board is used to monitor the training of deep neural networks and solve binary classification problems using deep learning. Readers will then learn to optimize hyperparameters in their deep learning models. The book then takes the readers through the practical implementation of training CNN's, RNN's, and LSTM's with word embeddings and seq2seq models from scratch. Later the book explores advanced topics such as Deep Q Network to solve an autonomous agent problem and how to use two adversarial networks to generate artificial images that appear real. For implementation purposes, we look at popular Python-based deep learning frameworks such as Keras and Tensorflow, Each chapter provides best practices and safe choices to help readers make the right decision while training deep neural networks. By the end of this book, you will be able to solve real-world problems quickly with deep neural networks. What you will learn Solve regression and classification challenges with TensorFlow and Keras Learn to use Tensor Board for monitoring neural networks and its training Optimize hyperparameters and safe choices/best practices Build CNN's, RNN's, and LSTM's and using word embedding from scratch Build and train seq2seq models for machine translation and chat applications. Understanding Deep Q networks and how to use one to solve an autonomous agent problem. Explore Deep Q Network and address autonomous agent challenges. Who this book is for If you are a Data Scientist or a Machine Learning expert, then this book is a very useful read in training your advanced machine learning and deep learning models. You can also refer this book if you are stuck in-between the neural network modeling and need immediate assistance in getting accomplishing the task smoothly. Some prior knowledge of Python and tight hold on the basics of machine learning is required.


Deep Learning Quick Reference Related Books

Deep Learning Quick Reference
Language: en
Pages: 261
Authors: Michael Bernico
Categories: Computers
Type: BOOK - Published: 2018-03-09 - Publisher: Packt Publishing Ltd

GET EBOOK

Dive deeper into neural networks and get your models trained, optimized with this quick reference guide Key Features A quick reference to all important deep lea
Deep Learning with R
Language: en
Pages: 528
Authors: François Chollet
Categories: Computers
Type: BOOK - Published: 2018-01-22 - Publisher: Simon and Schuster

GET EBOOK

Summary Deep Learning with R introduces the world of deep learning using the powerful Keras library and its R language interface. The book builds your understan
Deep Learning Illustrated
Language: en
Pages: 725
Authors: Jon Krohn
Categories: Computers
Type: BOOK - Published: 2019-08-05 - Publisher: Addison-Wesley Professional

GET EBOOK

"The authors’ clear visual style provides a comprehensive look at what’s currently possible with artificial neural networks as well as a glimpse of the magi
Machine Learning Pocket Reference
Language: en
Pages: 230
Authors: Matt Harrison
Categories: Computers
Type: BOOK - Published: 2019-08-27 - Publisher: "O'Reilly Media, Inc."

GET EBOOK

With detailed notes, tables, and examples, this handy reference will help you navigate the basics of structured machine learning. Author Matt Harrison delivers
Deep Learning with PyTorch Quick Start Guide
Language: en
Pages: 150
Authors: David Julian
Categories: Computers
Type: BOOK - Published: 2018-12-24 - Publisher: Packt Publishing Ltd

GET EBOOK

Introduction to deep learning and PyTorch by building a convolutional neural network and recurrent neural network for real-world use cases such as image classif