Concise Course on Fixed Point Theorems(コンシス・コース・オン・フィックスドゥ・ポイントセオレムズ)

Concise Course on Fixed Point Theorems(コンシス・コース・オン・フィックスドゥ・ポイントセオレムズ)
Author :
Publisher :
Total Pages : 182
Release :
ISBN-10 : 4946552081
ISBN-13 : 9784946552083
Rating : 4/5 (083 Downloads)

Book Synopsis Concise Course on Fixed Point Theorems(コンシス・コース・オン・フィックスドゥ・ポイントセオレムズ) by : Kazimierz Goebel

Download or read book Concise Course on Fixed Point Theorems(コンシス・コース・オン・フィックスドゥ・ポイントセオレムズ) written by Kazimierz Goebel and published by . This book was released on 2002-10 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Concise Course on Fixed Point Theorems(コンシス・コース・オン・フィックスドゥ・ポイントセオレムズ) Related Books

Concise Course on Fixed Point Theorems(コンシス・コース・オン・フィックスドゥ・ポイントセオレムズ)
Language: en
Pages: 182
Authors: Kazimierz Goebel
Categories: Fixed point theory
Type: BOOK - Published: 2002-10 - Publisher:

GET EBOOK

Fixed Point Theorems and Applications
Language: en
Pages: 171
Authors: Vittorino Pata
Categories: Differential equations
Type: BOOK - Published: 2019 - Publisher:

GET EBOOK

This book addresses fixed point theory, a fascinating and far-reaching field with applications in several areas of mathematics. The content is divided into two
A Concise Course in Algebraic Topology
Language: en
Pages: 243
Authors: J. Peter May
Categories: Algebraic topology
Type: BOOK - Published: 2019 - Publisher:

GET EBOOK

Fixed Point Theory in Modular Function Spaces
Language: en
Pages: 251
Authors: Mohamed A. Khamsi
Categories: Mathematics
Type: BOOK - Published: 2015-03-24 - Publisher: Birkhäuser

GET EBOOK

This monograph provides a concise introduction to the main results and methods of the fixed point theory in modular function spaces. Modular function spaces are
Handbook of Metric Fixed Point Theory
Language: en
Pages: 722
Authors: William Kirk
Categories: Mathematics
Type: BOOK - Published: 2001-06-30 - Publisher: Springer Science & Business Media

GET EBOOK

Preface. 1. Contraction Mappings and Extensions; W.A. Kirk. 2. Examples of Fixed Point Free Mappings; B. Sims. 3. Classical Theory of Nonexpansive Mappings; K.