BERRU Predictive Modeling

BERRU Predictive Modeling
Author :
Publisher : Springer
Total Pages : 463
Release :
ISBN-10 : 9783662583951
ISBN-13 : 366258395X
Rating : 4/5 (95X Downloads)

Book Synopsis BERRU Predictive Modeling by : Dan Gabriel Cacuci

Download or read book BERRU Predictive Modeling written by Dan Gabriel Cacuci and published by Springer. This book was released on 2018-12-29 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the experimental calibration of best-estimate numerical simulation models. The results of measurements and computations are never exact. Therefore, knowing only the nominal values of experimentally measured or computed quantities is insufficient for applications, particularly since the respective experimental and computed nominal values seldom coincide. In the author’s view, the objective of predictive modeling is to extract “best estimate” values for model parameters and predicted results, together with “best estimate” uncertainties for these parameters and results. To achieve this goal, predictive modeling combines imprecisely known experimental and computational data, which calls for reasoning on the basis of incomplete, error-rich, and occasionally discrepant information. The customary methods used for data assimilation combine experimental and computational information by minimizing an a priori, user-chosen, “cost functional” (usually a quadratic functional that represents the weighted errors between measured and computed responses). In contrast to these user-influenced methods, the BERRU (Best Estimate Results with Reduced Uncertainties) Predictive Modeling methodology developed by the author relies on the thermodynamics-based maximum entropy principle to eliminate the need for relying on minimizing user-chosen functionals, thus generalizing the “data adjustment” and/or the “4D-VAR” data assimilation procedures used in the geophysical sciences. The BERRU predictive modeling methodology also provides a “model validation metric” which quantifies the consistency (agreement/disagreement) between measurements and computations. This “model validation metric” (or “consistency indicator”) is constructed from parameter covariance matrices, response covariance matrices (measured and computed), and response sensitivities to model parameters. Traditional methods for computing response sensitivities are hampered by the “curse of dimensionality,” which makes them impractical for applications to large-scale systems that involve many imprecisely known parameters. Reducing the computational effort required for precisely calculating the response sensitivities is paramount, and the comprehensive adjoint sensitivity analysis methodology developed by the author shows great promise in this regard, as shown in this book. After discarding inconsistent data (if any) using the consistency indicator, the BERRU predictive modeling methodology provides best-estimate values for predicted parameters and responses along with best-estimate reduced uncertainties (i.e., smaller predicted standard deviations) for the predicted quantities. Applying the BERRU methodology yields optimal, experimentally validated, “best estimate” predictive modeling tools for designing new technologies and facilities, while also improving on existing ones.


BERRU Predictive Modeling Related Books

BERRU Predictive Modeling
Language: en
Pages: 463
Authors: Dan Gabriel Cacuci
Categories: Technology & Engineering
Type: BOOK - Published: 2018-12-29 - Publisher: Springer

GET EBOOK

This book addresses the experimental calibration of best-estimate numerical simulation models. The results of measurements and computations are never exact. The
Advances in High-Order Predictive Modeling
Language: en
Pages: 303
Authors: Dan Gabriel Cacuci
Categories: Mathematics
Type: BOOK - Published: 2024-12-11 - Publisher: CRC Press

GET EBOOK

Continuing the author’s previous work on modeling, this book presents the most recent advances in high-order predictive modeling. The author begins with the m
The nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology, Volume III
Language: en
Pages: 379
Authors: Dan Gabriel Cacuci
Categories: Science
Type: BOOK - Published: 2023-04-11 - Publisher: Springer Nature

GET EBOOK

This text describes a comprehensive adjoint sensitivity analysis methodology (C-ASAM), developed by the author, enabling the efficient and exact computation of
Applications of Data Assimilation and Inverse Problems in the Earth Sciences
Language: en
Pages: 369
Authors: Alik Ismail-Zadeh
Categories: Science
Type: BOOK - Published: 2023-06-30 - Publisher: Cambridge University Press

GET EBOOK

Many contemporary problems within the Earth sciences are complex, and require an interdisciplinary approach. This book provides a comprehensive reference on dat
The nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology, Volume II
Language: en
Pages: 474
Authors: Dan Gabriel Cacuci
Categories: Science
Type: BOOK - Published: 2023-04-26 - Publisher: Springer Nature

GET EBOOK

This text describes a comprehensive adjoint sensitivity analysis methodology (nth-CASAM), developed by the author, which enablesthe efficient and exact computat