An Introduction to Quantum and Vassiliev Knot Invariants

An Introduction to Quantum and Vassiliev Knot Invariants
Author :
Publisher : Springer
Total Pages : 425
Release :
ISBN-10 : 9783030052133
ISBN-13 : 3030052133
Rating : 4/5 (133 Downloads)

Book Synopsis An Introduction to Quantum and Vassiliev Knot Invariants by : David M. Jackson

Download or read book An Introduction to Quantum and Vassiliev Knot Invariants written by David M. Jackson and published by Springer. This book was released on 2019-05-04 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an accessible introduction to knot theory, focussing on Vassiliev invariants, quantum knot invariants constructed via representations of quantum groups, and how these two apparently distinct theories come together through the Kontsevich invariant. Consisting of four parts, the book opens with an introduction to the fundamentals of knot theory, and to knot invariants such as the Jones polynomial. The second part introduces quantum invariants of knots, working constructively from first principles towards the construction of Reshetikhin-Turaev invariants and a description of how these arise through Drinfeld and Jimbo's quantum groups. Its third part offers an introduction to Vassiliev invariants, providing a careful account of how chord diagrams and Jacobi diagrams arise in the theory, and the role that Lie algebras play. The final part of the book introduces the Konstevich invariant. This is a universal quantum invariant and a universal Vassiliev invariant, and brings together these two seemingly different families of knot invariants. The book provides a detailed account of the construction of the Jones polynomial via the quantum groups attached to sl(2), the Vassiliev weight system arising from sl(2), and how these invariants come together through the Kontsevich invariant.


An Introduction to Quantum and Vassiliev Knot Invariants Related Books

An Introduction to Quantum and Vassiliev Knot Invariants
Language: en
Pages: 425
Authors: David M. Jackson
Categories: Mathematics
Type: BOOK - Published: 2019-05-04 - Publisher: Springer

GET EBOOK

This book provides an accessible introduction to knot theory, focussing on Vassiliev invariants, quantum knot invariants constructed via representations of quan
Introduction to Vassiliev Knot Invariants
Language: en
Pages: 521
Authors: S. Chmutov
Categories: Mathematics
Type: BOOK - Published: 2012-05-24 - Publisher: Cambridge University Press

GET EBOOK

A detailed exposition of the theory with an emphasis on its combinatorial aspects.
Quantum Invariants
Language: en
Pages: 516
Authors: Tomotada Ohtsuki
Categories: Science
Type: BOOK - Published: 2002 - Publisher: World Scientific

GET EBOOK

This book provides an extensive and self-contained presentation of quantum and related invariants of knots and 3-manifolds. Polynomial invariants of knots, such
Introductory Lectures on Knot Theory
Language: en
Pages: 577
Authors: Louis H. Kauffman
Categories: Mathematics
Type: BOOK - Published: 2012 - Publisher: World Scientific

GET EBOOK

More recently, Khovanov introduced link homology as a generalization of the Jones polynomial to homology of chain complexes and Ozsvath and Szabo developed Heeg
Knot Theory and Its Applications
Language: en
Pages: 348
Authors: Kunio Murasugi
Categories: Mathematics
Type: BOOK - Published: 2009-12-29 - Publisher: Springer Science & Business Media

GET EBOOK

This book introduces the study of knots, providing insights into recent applications in DNA research and graph theory. It sets forth fundamental facts such as k