Targeted Learning in Data Science

Targeted Learning in Data Science
Author :
Publisher : Springer
Total Pages : 655
Release :
ISBN-10 : 9783319653044
ISBN-13 : 3319653040
Rating : 4/5 (040 Downloads)

Book Synopsis Targeted Learning in Data Science by : Mark J. van der Laan

Download or read book Targeted Learning in Data Science written by Mark J. van der Laan and published by Springer. This book was released on 2018-03-28 with total page 655 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook for graduate students in statistics, data science, and public health deals with the practical challenges that come with big, complex, and dynamic data. It presents a scientific roadmap to translate real-world data science applications into formal statistical estimation problems by using the general template of targeted maximum likelihood estimators. These targeted machine learning algorithms estimate quantities of interest while still providing valid inference. Targeted learning methods within data science area critical component for solving scientific problems in the modern age. The techniques can answer complex questions including optimal rules for assigning treatment based on longitudinal data with time-dependent confounding, as well as other estimands in dependent data structures, such as networks. Included in Targeted Learning in Data Science are demonstrations with soft ware packages and real data sets that present a case that targeted learning is crucial for the next generation of statisticians and data scientists. Th is book is a sequel to the first textbook on machine learning for causal inference, Targeted Learning, published in 2011. Mark van der Laan, PhD, is Jiann-Ping Hsu/Karl E. Peace Professor of Biostatistics and Statistics at UC Berkeley. His research interests include statistical methods in genomics, survival analysis, censored data, machine learning, semiparametric models, causal inference, and targeted learning. Dr. van der Laan received the 2004 Mortimer Spiegelman Award, the 2005 Van Dantzig Award, the 2005 COPSS Snedecor Award, the 2005 COPSS Presidential Award, and has graduated over 40 PhD students in biostatistics and statistics. Sherri Rose, PhD, is Associate Professor of Health Care Policy (Biostatistics) at Harvard Medical School. Her work is centered on developing and integrating innovative statistical approaches to advance human health. Dr. Rose’s methodological research focuses on nonparametric machine learning for causal inference and prediction. She co-leads the Health Policy Data Science Lab and currently serves as an associate editor for the Journal of the American Statistical Association and Biostatistics.


Targeted Learning in Data Science Related Books

Targeted Learning in Data Science
Language: en
Pages: 655
Authors: Mark J. van der Laan
Categories: Mathematics
Type: BOOK - Published: 2018-03-28 - Publisher: Springer

GET EBOOK

This textbook for graduate students in statistics, data science, and public health deals with the practical challenges that come with big, complex, and dynamic
Targeted Learning
Language: en
Pages: 628
Authors: Mark J. van der Laan
Categories: Mathematics
Type: BOOK - Published: 2011-06-17 - Publisher: Springer Science & Business Media

GET EBOOK

The statistics profession is at a unique point in history. The need for valid statistical tools is greater than ever; data sets are massive, often measuring hun
Data Science and Machine Learning
Language: en
Pages: 538
Authors: Dirk P. Kroese
Categories: Business & Economics
Type: BOOK - Published: 2019-11-20 - Publisher: CRC Press

GET EBOOK

Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked
Data Science Live Book
Language: en
Pages:
Authors: Pablo Casas
Categories:
Type: BOOK - Published: 2018-03-16 - Publisher:

GET EBOOK

This book is a practical guide to problems that commonly arise when developing a machine learning project. The book's topics are: Exploratory data analysis Data
Business Data Science: Combining Machine Learning and Economics to Optimize, Automate, and Accelerate Business Decisions
Language: en
Pages: 350
Authors: Matt Taddy
Categories: Business & Economics
Type: BOOK - Published: 2019-08-23 - Publisher: McGraw Hill Professional

GET EBOOK

Use machine learning to understand your customers, frame decisions, and drive value The business analytics world has changed, and Data Scientists are taking ove