Spectral Theory of Self-Adjoint Operators in Hilbert Space
Author | : Michael Sh. Birman |
Publisher | : Springer Science & Business Media |
Total Pages | : 316 |
Release | : 2012-12-06 |
ISBN-10 | : 9789400945869 |
ISBN-13 | : 9400945868 |
Rating | : 4/5 (868 Downloads) |
Download or read book Spectral Theory of Self-Adjoint Operators in Hilbert Space written by Michael Sh. Birman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: It isn't that they can't see the solution. It is Approach your problems from the right end that they can't see the problem. and begin with the answers. Then one day, perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be com pletely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order" , which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.