Fundamentals of Optimization Techniques with Algorithms

Fundamentals of Optimization Techniques with Algorithms
Author :
Publisher : Academic Press
Total Pages : 323
Release :
ISBN-10 : 9780128224922
ISBN-13 : 0128224924
Rating : 4/5 (924 Downloads)

Book Synopsis Fundamentals of Optimization Techniques with Algorithms by : Sukanta Nayak

Download or read book Fundamentals of Optimization Techniques with Algorithms written by Sukanta Nayak and published by Academic Press. This book was released on 2020-08-25 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization is a key concept in mathematics, computer science, and operations research, and is essential to the modeling of any system, playing an integral role in computer-aided design. Fundamentals of Optimization Techniques with Algorithms presents a complete package of various traditional and advanced optimization techniques along with a variety of example problems, algorithms and MATLABĀ© code optimization techniques, for linear and nonlinear single variable and multivariable models, as well as multi-objective and advanced optimization techniques. It presents both theoretical and numerical perspectives in a clear and approachable way. In order to help the reader apply optimization techniques in practice, the book details program codes and computer-aided designs in relation to real-world problems. Ten chapters cover, an introduction to optimization; linear programming; single variable nonlinear optimization; multivariable unconstrained nonlinear optimization; multivariable constrained nonlinear optimization; geometric programming; dynamic programming; integer programming; multi-objective optimization; and nature-inspired optimization. This book provides accessible coverage of optimization techniques, and helps the reader to apply them in practice. - Presents optimization techniques clearly, including worked-out examples, from traditional to advanced - Maps out the relations between optimization and other mathematical topics and disciplines - Provides systematic coverage of algorithms to facilitate computer coding - Gives MATLABĀ© codes in relation to optimization techniques and their use in computer-aided design - Presents nature-inspired optimization techniques including genetic algorithms and artificial neural networks


Fundamentals of Optimization Techniques with Algorithms Related Books

Fundamentals of Optimization Techniques with Algorithms
Language: en
Pages: 323
Authors: Sukanta Nayak
Categories: Technology & Engineering
Type: BOOK - Published: 2020-08-25 - Publisher: Academic Press

GET EBOOK

Optimization is a key concept in mathematics, computer science, and operations research, and is essential to the modeling of any system, playing an integral rol
Optimization Techniques and Applications with Examples
Language: en
Pages: 384
Authors: Xin-She Yang
Categories: Mathematics
Type: BOOK - Published: 2018-09-19 - Publisher: John Wiley & Sons

GET EBOOK

A guide to modern optimization applications and techniques in newly emerging areas spanning optimization, data science, machine intelligence, engineering, and c
Numerical Optimization
Language: en
Pages: 686
Authors: Jorge Nocedal
Categories: Mathematics
Type: BOOK - Published: 2006-12-11 - Publisher: Springer Science & Business Media

GET EBOOK

Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus
Modern Optimization Techniques with Applications in Electric Power Systems
Language: en
Pages: 430
Authors: Soliman Abdel-Hady Soliman
Categories: Mathematics
Type: BOOK - Published: 2011-12-15 - Publisher: Springer Science & Business Media

GET EBOOK

This book presents the application of some AI related optimization techniques in the operation and control of electric power systems. With practical application
First-Order Methods in Optimization
Language: en
Pages: 476
Authors: Amir Beck
Categories: Mathematics
Type: BOOK - Published: 2017-10-02 - Publisher: SIAM

GET EBOOK

The primary goal of this book is to provide a self-contained, comprehensive study of the main ?rst-order methods that are frequently used in solving large-scale