Normally Hyperbolic Invariant Manifolds in Dynamical Systems
Author | : Stephen Wiggins |
Publisher | : Springer Science & Business Media |
Total Pages | : 212 |
Release | : 1994-06-10 |
ISBN-10 | : 038794205X |
ISBN-13 | : 9780387942056 |
Rating | : 4/5 (056 Downloads) |
Download or read book Normally Hyperbolic Invariant Manifolds in Dynamical Systems written by Stephen Wiggins and published by Springer Science & Business Media. This book was released on 1994-06-10 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past ten years, there has been much progress in understanding the global dynamics of systems with several degrees-of-freedom. An important tool in these studies has been the theory of normally hyperbolic invariant manifolds and foliations of normally hyperbolic invariant manifolds. In recent years these techniques have been used for the development of global perturbation methods, the study of resonance phenomena in coupled oscillators, geometric singular perturbation theory, and the study of bursting phenomena in biological oscillators. "Invariant manifold theorems" have become standard tools for applied mathematicians, physicists, engineers, and virtually anyone working on nonlinear problems from a geometric viewpoint. In this book, the author gives a self-contained development of these ideas as well as proofs of the main theorems along the lines of the seminal works of Fenichel. In general, the Fenichel theory is very valuable for many applications, but it is not easy for people to get into from existing literature. This book provides an excellent avenue to that. Wiggins also describes a variety of settings where these techniques can be used in applications.