Introduction to the H-principle
Author | : Y. Eliashberg |
Publisher | : American Mathematical Soc. |
Total Pages | : 226 |
Release | : |
ISBN-10 | : 9780821872277 |
ISBN-13 | : 0821872273 |
Rating | : 4/5 (273 Downloads) |
Download or read book Introduction to the H-principle written by Y. Eliashberg and published by American Mathematical Soc.. This book was released on with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most powerful modern methods of solving partial differential equations is Gromov's $h$-principle. It has also been, traditionally, one of the most difficult to explain. This book is the first broadly accessible exposition of the principle and its applications. The essence of the $h$-principle is the reduction of problems involving partial differential relations to problems of a purely homotopy-theoretic nature. Two famous examples of the $h$-principle are the Nash-Kuiper$C1$-isometric embedding theory in Riemannian geometry and the Smale-Hirsch immersion theory in differential topology. Gromov transformed these examples into a powerful general method for proving the $h$-principle. Both of these examples and their explanations in terms of the $h$-principle arecovered in detail in the book. The authors cover two main embodiments of the principle: holonomic approximation and convex integration. The first is a version of the method of continuous sheaves. The reader will find that, with a few notable exceptions, most instances of the $h$-principle can be treated by the methods considered here. There are, naturally, many connections to symplectic and contact geometry. The book would be an excellent text for a graduate course on modern methods for solvingpartial differential equations. Geometers and analysts will also find much value in this very readable exposition of an important and remarkable technique.