Introduction to Global Variational Geometry

Introduction to Global Variational Geometry
Author :
Publisher : Springer
Total Pages : 366
Release :
ISBN-10 : 9789462390737
ISBN-13 : 9462390738
Rating : 4/5 (738 Downloads)

Book Synopsis Introduction to Global Variational Geometry by : Demeter Krupka

Download or read book Introduction to Global Variational Geometry written by Demeter Krupka and published by Springer. This book was released on 2015-01-13 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to recent research in the global variational theory on smooth manifolds. Its main objective is an extension of the classical variational calculus on Euclidean spaces to (topologically nontrivial) finite-dimensional smooth manifolds; to this purpose the methods of global analysis of differential forms are used. Emphasis is placed on the foundations of the theory of variational functionals on fibered manifolds - relevant geometric structures for variational principles in geometry, physical field theory and higher-order fibered mechanics. The book chapters include: - foundations of jet bundles and analysis of differential forms and vector fields on jet bundles, - the theory of higher-order integral variational functionals for sections of a fibred space, the (global) first variational formula in infinitesimal and integral forms- extremal conditions and the discussion of Noether symmetries and generalizations,- the inverse problems of the calculus of variations of Helmholtz type- variational sequence theory and its consequences for the global inverse problem (cohomology conditions)- examples of variational functionals of mathematical physics. Complete formulations and proofs of all basic assertions are given, based on theorems of global analysis explained in the Appendix.


Introduction to Global Variational Geometry Related Books

Introduction to Global Variational Geometry
Language: en
Pages: 366
Authors: Demeter Krupka
Categories: Mathematics
Type: BOOK - Published: 2015-01-13 - Publisher: Springer

GET EBOOK

The book is devoted to recent research in the global variational theory on smooth manifolds. Its main objective is an extension of the classical variational cal
Interpolation Theory - Function Spaces - Differential Operators
Language: en
Pages: 0
Authors: Hans Triebel
Categories: Science
Type: BOOK - Published: 1999-01-06 - Publisher: Wiley-VCH

GET EBOOK

Interpolation Theory • Function Spaces • Differential Operators contains a systematic treatment in the following topics: Interpolation theory in Banach spac
The Inverse Problem of the Calculus of Variations
Language: en
Pages: 296
Authors: Dmitry V. Zenkov
Categories: Mathematics
Type: BOOK - Published: 2015-10-15 - Publisher: Springer

GET EBOOK

The aim of the present book is to give a systematic treatment of the inverse problem of the calculus of variations, i.e. how to recognize whether a system of di
Lie Groups, Differential Equations, and Geometry
Language: en
Pages: 368
Authors: Giovanni Falcone
Categories: Mathematics
Type: BOOK - Published: 2017-09-19 - Publisher: Springer

GET EBOOK

This book collects a series of contributions addressing the various contexts in which the theory of Lie groups is applied. A preliminary chapter serves the read
Variational Analysis
Language: en
Pages: 747
Authors: R. Tyrrell Rockafellar
Categories: Mathematics
Type: BOOK - Published: 2009-06-26 - Publisher: Springer Science & Business Media

GET EBOOK

From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equi