Free Algebras and PI-algebras
Author | : Vesselin S. Drensky |
Publisher | : |
Total Pages | : 292 |
Release | : 2000 |
ISBN-10 | : UOM:39015047590008 |
ISBN-13 | : |
Rating | : 4/5 ( Downloads) |
Download or read book Free Algebras and PI-algebras written by Vesselin S. Drensky and published by . This book was released on 2000 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to the combinatorial theory of polynomial algebras, free associative and free Lie algebras, and algebras with polynomial identities. It also examines the structure of automorphism groups of free and relatively free algebras. It is based on graduate courses and short cycles of lectures presented by the author at several universities and its goal is to involve the reader as soon as possible in the research area, to make him or her able to read books and papers on the considered topics. It contains both classical and contemporary results and methods. A specific feature of the book is that it includes as its inseparable part more than 250 exercises and examples with detailed hints (50 % of the numbered statements), some of them treating serious mathematical results. The exposition is accessible for graduate and advanced undergraduate students with standard background on linear algebra and some elements of ring theory and group theory. The professional mathematician working in the field of algebra and other related topics also will find the book useful for his or her research and teaching. TOC:Introduction 1. Commutative, Associative and Lie Algebras: Basic properties of algebras; Free algebras; The Poincaré-Birkhoff-Witt theorem. 2. Algebras with Polynomial Identities: Definitions and examples of PI-Algebras; Varieties and relatively free algebras; The theorem of Birkhoff. 3. The Specht Problem: The finite basis property; Lie algebras in characteristic 2. 4. Numerical Invariants of T-Ideals: Graded vector spaces; Homogeneous and multilinear polynomial identities; Proper polynomial identities. 5. Polynomial Identities of Concrete Algebras: Polynomial identities of the Grassmann algebra; Polynomial identities of the upper triangular matrices. 6. Methods of Commutative Algebra: Rational Hilbert series; Nonmatrix polynomial identities; Commutative and noncommutative invariant theory. 7. Polynomial Identities of the Matrix Algebras: The Amitsur-Levitzki theorem; Generic matrices; Central polynomials; Various identities of matrices. 8. Multilinear Polynomial Identities: The codimension theorem of Regev; Algebras with polynomial growth of codimensions; The Nagata-Higman theorem; The theory of Kemer. 9. Finitely Generated PI-Algebras: The problems of Burnside and Kurosch; The Shirshov theorem; Growth of algebras and Gelfand-Kirillov dimension; Gelfand-Kirillov dimension of PI-Algebras. 10. Automorphisms of Free Algebras: Automorphisms of groups and algebras; The polynomial algebra in two variables; The free associative algebra of rank two; Exponential automorphisms; Automorphisms of relatively free algebras. 11. Free Lie Algebras and Their Automorphisms: Bases and subalgebras of free Lie algebras; Automorphisms of free Lie algebras; Automorphisms of relatively free Lie algebras. 12. The Method of Representation Theory: Representations of finite groups; The symmetric group; Multilinear polynomial identities; The action of the general linear group; Proper polynomial identities; Polynomial identities of matrices.