Practical Statistics for Data Scientists

Practical Statistics for Data Scientists
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 322
Release :
ISBN-10 : 9781491952917
ISBN-13 : 1491952911
Rating : 4/5 (911 Downloads)

Book Synopsis Practical Statistics for Data Scientists by : Peter Bruce

Download or read book Practical Statistics for Data Scientists written by Peter Bruce and published by "O'Reilly Media, Inc.". This book was released on 2017-05-10 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data


Practical Statistics for Data Scientists Related Books

Practical Statistics for Data Scientists
Language: en
Pages: 322
Authors: Peter Bruce
Categories: Computers
Type: BOOK - Published: 2017-05-10 - Publisher: "O'Reilly Media, Inc."

GET EBOOK

Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics r
Data Science and Machine Learning
Language: en
Pages: 538
Authors: Dirk P. Kroese
Categories: Business & Economics
Type: BOOK - Published: 2019-11-20 - Publisher: CRC Press

GET EBOOK

Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked
Essential Math for Data Science
Language: en
Pages: 352
Authors: Thomas Nield
Categories: Computers
Type: BOOK - Published: 2022-05-26 - Publisher: "O'Reilly Media, Inc."

GET EBOOK

Master the math needed to excel in data science, machine learning, and statistics. In this book author Thomas Nield guides you through areas like calculus, prob
Foundations of Data Science
Language: en
Pages: 433
Authors: Avrim Blum
Categories: Computers
Type: BOOK - Published: 2020-01-23 - Publisher: Cambridge University Press

GET EBOOK

This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and a
Mathematics for Machine Learning
Language: en
Pages: 392
Authors: Marc Peter Deisenroth
Categories: Computers
Type: BOOK - Published: 2020-04-23 - Publisher: Cambridge University Press

GET EBOOK

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, opti