Deep Learning Techniques for Music Generation

Deep Learning Techniques for Music Generation
Author :
Publisher : Springer
Total Pages : 303
Release :
ISBN-10 : 9783319701639
ISBN-13 : 3319701630
Rating : 4/5 (630 Downloads)

Book Synopsis Deep Learning Techniques for Music Generation by : Jean-Pierre Briot

Download or read book Deep Learning Techniques for Music Generation written by Jean-Pierre Briot and published by Springer. This book was released on 2019-11-08 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a survey and analysis of how deep learning can be used to generate musical content. The authors offer a comprehensive presentation of the foundations of deep learning techniques for music generation. They also develop a conceptual framework used to classify and analyze various types of architecture, encoding models, generation strategies, and ways to control the generation. The five dimensions of this framework are: objective (the kind of musical content to be generated, e.g., melody, accompaniment); representation (the musical elements to be considered and how to encode them, e.g., chord, silence, piano roll, one-hot encoding); architecture (the structure organizing neurons, their connexions, and the flow of their activations, e.g., feedforward, recurrent, variational autoencoder); challenge (the desired properties and issues, e.g., variability, incrementality, adaptability); and strategy (the way to model and control the process of generation, e.g., single-step feedforward, iterative feedforward, decoder feedforward, sampling). To illustrate the possible design decisions and to allow comparison and correlation analysis they analyze and classify more than 40 systems, and they discuss important open challenges such as interactivity, originality, and structure. The authors have extensive knowledge and experience in all related research, technical, performance, and business aspects. The book is suitable for students, practitioners, and researchers in the artificial intelligence, machine learning, and music creation domains. The reader does not require any prior knowledge about artificial neural networks, deep learning, or computer music. The text is fully supported with a comprehensive table of acronyms, bibliography, glossary, and index, and supplementary material is available from the authors' website.


Deep Learning Techniques for Music Generation Related Books

Deep Learning Techniques for Music Generation
Language: en
Pages: 303
Authors: Jean-Pierre Briot
Categories: Computers
Type: BOOK - Published: 2019-11-08 - Publisher: Springer

GET EBOOK

This book is a survey and analysis of how deep learning can be used to generate musical content. The authors offer a comprehensive presentation of the foundatio
Hands-On Music Generation with Magenta
Language: en
Pages: 348
Authors: Alexandre DuBreuil
Categories: Mathematics
Type: BOOK - Published: 2020-01-31 - Publisher: Packt Publishing Ltd

GET EBOOK

Design and use machine learning models for music generation using Magenta and make them interact with existing music creation tools Key FeaturesLearn how machin
Generative Deep Learning
Language: en
Pages: 301
Authors: David Foster
Categories: Computers
Type: BOOK - Published: 2019-06-28 - Publisher: "O'Reilly Media, Inc."

GET EBOOK

Generative modeling is one of the hottest topics in AI. It’s now possible to teach a machine to excel at human endeavors such as painting, writing, and compos
Proceedings of International Conference on Computational Intelligence, Data Science and Cloud Computing
Language: en
Pages: 795
Authors: Valentina Emilia Balas
Categories: Artificial intelligence
Type: BOOK - Published: 2021 - Publisher: Springer Nature

GET EBOOK

This book includes selected papers presented at International Conference on Computational Intelligence, Data Science and Cloud Computing (IEM-ICDC) 2020, organi
Music Emotion Recognition
Language: en
Pages: 251
Authors: Yi-Hsuan Yang
Categories: Computers
Type: BOOK - Published: 2011-02-22 - Publisher: CRC Press

GET EBOOK

Providing a complete review of existing work in music emotion developed in psychology and engineering, Music Emotion Recognition explains how to account for the