Foundations of Deep Reinforcement Learning

Foundations of Deep Reinforcement Learning
Author :
Publisher : Addison-Wesley Professional
Total Pages : 629
Release :
ISBN-10 : 9780135172483
ISBN-13 : 0135172489
Rating : 4/5 (489 Downloads)

Book Synopsis Foundations of Deep Reinforcement Learning by : Laura Graesser

Download or read book Foundations of Deep Reinforcement Learning written by Laura Graesser and published by Addison-Wesley Professional. This book was released on 2019-11-20 with total page 629 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and Practice Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games—such as Go, Atari games, and DotA 2—to robotics. Foundations of Deep Reinforcement Learning is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software library SLM Lab, and finishes with the practical details of getting deep RL to work. This guide is ideal for both computer science students and software engineers who are familiar with basic machine learning concepts and have a working understanding of Python. Understand each key aspect of a deep RL problem Explore policy- and value-based algorithms, including REINFORCE, SARSA, DQN, Double DQN, and Prioritized Experience Replay (PER) Delve into combined algorithms, including Actor-Critic and Proximal Policy Optimization (PPO) Understand how algorithms can be parallelized synchronously and asynchronously Run algorithms in SLM Lab and learn the practical implementation details for getting deep RL to work Explore algorithm benchmark results with tuned hyperparameters Understand how deep RL environments are designed Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.


Foundations of Deep Reinforcement Learning Related Books

Foundations of Deep Reinforcement Learning
Language: en
Pages: 629
Authors: Laura Graesser
Categories: Computers
Type: BOOK - Published: 2019-11-20 - Publisher: Addison-Wesley Professional

GET EBOOK

The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and Practice Deep reinforcement learning (deep RL) combines deep learning and
Deep Reinforcement Learning
Language: en
Pages: 215
Authors: Mohit Sewak
Categories: Computers
Type: BOOK - Published: 2019-06-27 - Publisher: Springer

GET EBOOK

This book starts by presenting the basics of reinforcement learning using highly intuitive and easy-to-understand examples and applications, and then introduces
Deep Learning and the Game of Go
Language: en
Pages: 611
Authors: Kevin Ferguson
Categories: Computers
Type: BOOK - Published: 2019-01-06 - Publisher: Simon and Schuster

GET EBOOK

Summary Deep Learning and the Game of Go teaches you how to apply the power of deep learning to complex reasoning tasks by building a Go-playing AI. After expos
Deep Learning Essentials
Language: en
Pages: 271
Authors: Anurag Bhardwaj
Categories: Computers
Type: BOOK - Published: 2018-01-30 - Publisher: Packt Publishing Ltd

GET EBOOK

Get to grips with the essentials of deep learning by leveraging the power of Python Key Features Your one-stop solution to get started with the essentials of de
Deep Reinforcement Learning
Language: en
Pages: 526
Authors: Hao Dong
Categories: Computers
Type: BOOK - Published: 2020-06-29 - Publisher: Springer Nature

GET EBOOK

Deep reinforcement learning (DRL) is the combination of reinforcement learning (RL) and deep learning. It has been able to solve a wide range of complex decisio