The Classification of the Finite Simple Groups, Number 8
Author | : Daniel Gorenstein |
Publisher | : American Mathematical Soc. |
Total Pages | : 506 |
Release | : 2018-12-12 |
ISBN-10 | : 9781470441890 |
ISBN-13 | : 1470441896 |
Rating | : 4/5 (896 Downloads) |
Download or read book The Classification of the Finite Simple Groups, Number 8 written by Daniel Gorenstein and published by American Mathematical Soc.. This book was released on 2018-12-12 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book completes a trilogy (Numbers 5, 7, and 8) of the series The Classification of the Finite Simple Groups treating the generic case of the classification of the finite simple groups. In conjunction with Numbers 4 and 6, it allows us to reach a major milestone in our series—the completion of the proof of the following theorem: Theorem O: Let G be a finite simple group of odd type, all of whose proper simple sections are known simple groups. Then either G is an alternating group or G is a finite group of Lie type defined over a field of odd order or G is one of six sporadic simple groups. Put another way, Theorem O asserts that any minimal counterexample to the classification of the finite simple groups must be of even type. The work of Aschbacher and Smith shows that a minimal counterexample is not of quasithin even type, while this volume shows that a minimal counterexample cannot be of generic even type, modulo the treatment of certain intermediate configurations of even type which will be ruled out in the next volume of our series.