Mathematical Modeling of Discontinuous Processes

Mathematical Modeling of Discontinuous Processes
Author :
Publisher : Scientific Research Publishing, Inc. USA
Total Pages : 239
Release :
ISBN-10 : 9781618964403
ISBN-13 : 1618964402
Rating : 4/5 (402 Downloads)

Book Synopsis Mathematical Modeling of Discontinuous Processes by : Andrey Antonov

Download or read book Mathematical Modeling of Discontinuous Processes written by Andrey Antonov and published by Scientific Research Publishing, Inc. USA. This book was released on 2017-12-19 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this monograph as a mathematical apparatus are used and investigated several classes of differential equations. The most significant feature of these differential equations is the presence of impulsive effects. The main goals and the results achieved in the monograph are related to the use of this class of equation for an adequate description of the dynamics of several types of processes that are subject to discrete external interventions and change the speed of development. In all proposed models the following requirements have met: 1) Presented and studied mathematical models in the book are extensions of existing known in the literature models of real objects and related processes. 2) Generalizations of the studied models are related to the admission of external impulsive effects, which lead to “jump-like” change the quantity characteristics of the described object as well as the rate of its modification. 3) Sufficient conditions which guarantee certain qualities of the dynamics of the quantities of the modeled objects are found. 4) Studies of the qualities of the modification of the modeled objects are possible to be successful by differential equations with variable structure and impulsive effects. 5) The considerations relating to the existence of the studied properties of dynamic objects cannot be realized without introducing new concepts and proving of appropriate theorems. The main objectives can be conditionally divided into several parts: 1) New classes of differential equations with variable structure and impulses are introduced and studied; 2) Specific properties of the above-mentioned class of differential equations are introduced and studied. The present monograph consists of an introduction and seven chapters. Each chapter contains several sections.


Mathematical Modeling of Discontinuous Processes Related Books

Mathematical Aspects of Discontinuous Galerkin Methods
Language: en
Pages: 392
Authors: Daniele Antonio Di Pietro
Categories: Mathematics
Type: BOOK - Published: 2011-11-03 - Publisher: Springer Science & Business Media

GET EBOOK

This book introduces the basic ideas to build discontinuous Galerkin methods and, at the same time, incorporates several recent mathematical developments. The p
Mathematical Modelling in Science and Technology
Language: en
Pages: 1023
Authors: Xavier J.R. Avula
Categories: Mathematics
Type: BOOK - Published: 2014-05-09 - Publisher: Elsevier

GET EBOOK

Mathematical Modelling in Science and Technology: The Fourth International Conference covers the proceedings of the Fourth International Conference by the same
Physical and Mathematical Modeling of Earth and Environment Processes (2018)
Language: en
Pages: 502
Authors: V. I. Karev
Categories: Science
Type: BOOK - Published: 2019-03-24 - Publisher: Springer

GET EBOOK

This book entitled "Physical and Mathematical Modeling of Earth and Environment Processes" is the result of a collaborative work after the 4th international sci
Mathematical Modeling with Computers
Language: en
Pages: 312
Authors: Samuel L. S. Jacoby
Categories: Computers
Type: BOOK - Published: 1980 - Publisher: Prentice Hall

GET EBOOK

"This book is a guide for builders and users of computer implemented mathematical models." -- Preface.
Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations
Language: en
Pages: 201
Authors: Beatrice Riviere
Categories: Mathematics
Type: BOOK - Published: 2008-12-18 - Publisher: SIAM

GET EBOOK

Focuses on three primal DG methods, covering both theory and computation, and providing the basic tools for analysis.