Mathematics for Machine Learning

Mathematics for Machine Learning
Author :
Publisher : Cambridge University Press
Total Pages : 392
Release :
ISBN-10 : 9781108569323
ISBN-13 : 1108569323
Rating : 4/5 (323 Downloads)

Book Synopsis Mathematics for Machine Learning by : Marc Peter Deisenroth

Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.


Mathematics for Machine Learning Related Books

Math for Deep Learning
Language: en
Pages: 346
Authors: Ronald T. Kneusel
Categories: Computers
Type: BOOK - Published: 2021-12-07 - Publisher: No Starch Press

GET EBOOK

Math for Deep Learning provides the essential math you need to understand deep learning discussions, explore more complex implementations, and better use the de
Mathematics for Machine Learning
Language: en
Pages: 392
Authors: Marc Peter Deisenroth
Categories: Computers
Type: BOOK - Published: 2020-04-23 - Publisher: Cambridge University Press

GET EBOOK

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, opti
Math and Architectures of Deep Learning
Language: en
Pages: 550
Authors: Krishnendu Chaudhury
Categories: Computers
Type: BOOK - Published: 2024-05-21 - Publisher: Simon and Schuster

GET EBOOK

Shine a spotlight into the deep learning “black box”. This comprehensive and detailed guide reveals the mathematical and architectural concepts behind deep
Mathematical Aspects of Deep Learning
Language: en
Pages: 493
Authors: Philipp Grohs
Categories: Computers
Type: BOOK - Published: 2022-12-31 - Publisher: Cambridge University Press

GET EBOOK

A mathematical introduction to deep learning, written by a group of leading experts in the field.
Deep Learning
Language: en
Pages: 801
Authors: Ian Goodfellow
Categories: Computers
Type: BOOK - Published: 2016-11-10 - Publisher: MIT Press

GET EBOOK

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and res