Executing Data Quality Projects

Executing Data Quality Projects
Author :
Publisher : Academic Press
Total Pages : 378
Release :
ISBN-10 : 9780128180167
ISBN-13 : 0128180161
Rating : 4/5 (161 Downloads)

Book Synopsis Executing Data Quality Projects by : Danette McGilvray

Download or read book Executing Data Quality Projects written by Danette McGilvray and published by Academic Press. This book was released on 2021-05-27 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Executing Data Quality Projects, Second Edition presents a structured yet flexible approach for creating, improving, sustaining and managing the quality of data and information within any organization. Studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. Help is here! This book describes a proven Ten Step approach that combines a conceptual framework for understanding information quality with techniques, tools, and instructions for practically putting the approach to work – with the end result of high-quality trusted data and information, so critical to today's data-dependent organizations. The Ten Steps approach applies to all types of data and all types of organizations – for-profit in any industry, non-profit, government, education, healthcare, science, research, and medicine. This book includes numerous templates, detailed examples, and practical advice for executing every step. At the same time, readers are advised on how to select relevant steps and apply them in different ways to best address the many situations they will face. The layout allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, best practices, and warnings. The experience of actual clients and users of the Ten Steps provide real examples of outputs for the steps plus highlighted, sidebar case studies called Ten Steps in Action. This book uses projects as the vehicle for data quality work and the word broadly to include: 1) focused data quality improvement projects, such as improving data used in supply chain management, 2) data quality activities in other projects such as building new applications and migrating data from legacy systems, integrating data because of mergers and acquisitions, or untangling data due to organizational breakups, and 3) ad hoc use of data quality steps, techniques, or activities in the course of daily work. The Ten Steps approach can also be used to enrich an organization's standard SDLC (whether sequential or Agile) and it complements general improvement methodologies such as six sigma or lean. No two data quality projects are the same but the flexible nature of the Ten Steps means the methodology can be applied to all. The new Second Edition highlights topics such as artificial intelligence and machine learning, Internet of Things, security and privacy, analytics, legal and regulatory requirements, data science, big data, data lakes, and cloud computing, among others, to show their dependence on data and information and why data quality is more relevant and critical now than ever before. - Includes concrete instructions, numerous templates, and practical advice for executing every step of The Ten Steps approach - Contains real examples from around the world, gleaned from the author's consulting practice and from those who implemented based on her training courses and the earlier edition of the book - Allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, and best practices - A companion Web site includes links to numerous data quality resources, including many of the templates featured in the text, quick summaries of key ideas from the Ten Steps methodology, and other tools and information that are available online


Executing Data Quality Projects Related Books

Executing Data Quality Projects
Language: en
Pages: 378
Authors: Danette McGilvray
Categories: Computers
Type: BOOK - Published: 2021-05-27 - Publisher: Academic Press

GET EBOOK

Executing Data Quality Projects, Second Edition presents a structured yet flexible approach for creating, improving, sustaining and managing the quality of data
Managing Data Quality
Language: en
Pages: 150
Authors: Tim King
Categories:
Type: BOOK - Published: 2020-04-27 - Publisher: BCS, The Chartered Institute for IT

GET EBOOK

This book explains data quality management in practical terms, focusing on three key areas - the nature of data in enterprises, the purpose and scope of data qu
Data Quality
Language: en
Pages: 313
Authors: Jack E. Olson
Categories: Computers
Type: BOOK - Published: 2003-01-09 - Publisher: Elsevier

GET EBOOK

Data Quality: The Accuracy Dimension is about assessing the quality of corporate data and improving its accuracy using the data profiling method. Corporate data
Foundations of Data Quality Management
Language: en
Pages: 220
Authors: Wenfei Fan
Categories: Computers
Type: BOOK - Published: 2012 - Publisher: Morgan & Claypool Publishers

GET EBOOK

Provides an overview of fundamental issues underlying central aspects of data quality - data consistency, data deduplication, data accuracy, data currency, and
Data Quality
Language: en
Pages: 368
Authors: Rupa Mahanti
Categories: Business & Economics
Type: BOOK - Published: 2019-03-18 - Publisher: Quality Press

GET EBOOK

“This is not the kind of book that you’ll read one time and be done with. So scan it quickly the first time through to get an idea of its breadth. Then dig in