Inviscid Incompressible Flow
Author | : Jeffrey S. Marshall |
Publisher | : John Wiley & Sons |
Total Pages | : 410 |
Release | : 2001-06-25 |
ISBN-10 | : 0471375667 |
ISBN-13 | : 9780471375661 |
Rating | : 4/5 (661 Downloads) |
Download or read book Inviscid Incompressible Flow written by Jeffrey S. Marshall and published by John Wiley & Sons. This book was released on 2001-06-25 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, modern account of the flow of inviscid incompressible fluids This one-stop resource for students, instructors, and professionals goes beyond analytical solutions for irrotational fluids to provide practical answers to real-world problems involving complex boundaries. It offers extensive coverage of vorticity transport as well as computational methods for inviscid flows, and it provides a solid foundation for further studies in fluid dynamics. Inviscid Incompressible Flow supplies a rigorous introduction to the continuum mechanics of fluid flows. It derives vector representation theorems, develops the vorticity transport theorem and related integral invariants, and presents theorems associated with the pressure field. This self-contained sourcebook describes both solution methods unique to two-dimensional flows and methods for axisymmetric and three-dimensional flows, many of which can be applied to two-dimensional flows as a special case. Finally, it examines perturbations of equilibrium solutions and ensuing stability issues. Important features of this powerful, timely volume include: * Focused, comprehensive coverage of inviscid incompressible fluids * Four entire chapters devoted to vorticity transport and solution of vortical flows * Theorems and computational methods for two-dimensional, axisymmetric, and three-dimensional flows * A companion Web site containing subroutines for calculations in the book * Clear, easy-to-follow presentation Inviscid Incompressible Flow, the only all-in-one presentation available on this topic, is a first-rate teaching and learning tool for graduate- and senior undergraduate-level courses in inviscid fluid dynamics. It is also an excellent reference for professionals and researchers in engineering, physics, and applied mathematics.