Deep Learning with R, Second Edition

Deep Learning with R, Second Edition
Author :
Publisher : Simon and Schuster
Total Pages : 778
Release :
ISBN-10 : 9781638350781
ISBN-13 : 1638350787
Rating : 4/5 (787 Downloads)

Book Synopsis Deep Learning with R, Second Edition by : Francois Chollet

Download or read book Deep Learning with R, Second Edition written by Francois Chollet and published by Simon and Schuster. This book was released on 2022-09-13 with total page 778 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning from the ground up using R and the powerful Keras library! In Deep Learning with R, Second Edition you will learn: Deep learning from first principles Image classification and image segmentation Time series forecasting Text classification and machine translation Text generation, neural style transfer, and image generation Deep Learning with R, Second Edition shows you how to put deep learning into action. It’s based on the revised new edition of François Chollet’s bestselling Deep Learning with Python. All code and examples have been expertly translated to the R language by Tomasz Kalinowski, who maintains the Keras and Tensorflow R packages at RStudio. Novices and experienced ML practitioners will love the expert insights, practical techniques, and important theory for building neural networks. About the technology Deep learning has become essential knowledge for data scientists, researchers, and software developers. The R language APIs for Keras and TensorFlow put deep learning within reach for all R users, even if they have no experience with advanced machine learning or neural networks. This book shows you how to get started on core DL tasks like computer vision, natural language processing, and more using R. About the book Deep Learning with R, Second Edition is a hands-on guide to deep learning using the R language. As you move through this book, you’ll quickly lock in the foundational ideas of deep learning. The intuitive explanations, crisp illustrations, and clear examples guide you through core DL skills like image processing and text manipulation, and even advanced features like transformers. This revised and expanded new edition is adapted from Deep Learning with Python, Second Edition by François Chollet, the creator of the Keras library. What's inside Image classification and image segmentation Time series forecasting Text classification and machine translation Text generation, neural style transfer, and image generation About the reader For readers with intermediate R skills. No previous experience with Keras, TensorFlow, or deep learning is required. About the author François Chollet is a software engineer at Google and creator of Keras. Tomasz Kalinowski is a software engineer at RStudio and maintainer of the Keras and Tensorflow R packages. J.J. Allaire is the founder of RStudio, and the author of the first edition of this book. Table of Contents 1 What is deep learning? 2 The mathematical building blocks of neural networks 3 Introduction to Keras and TensorFlow 4 Getting started with neural networks: Classification and regression 5 Fundamentals of machine learning 6 The universal workflow of machine learning 7 Working with Keras: A deep dive 8 Introduction to deep learning for computer vision 9 Advanced deep learning for computer vision 10 Deep learning for time series 11 Deep learning for text 12 Generative deep learning 13 Best practices for the real world 14 Conclusions


Deep Learning with R, Second Edition Related Books

Deep Learning with R, Second Edition
Language: en
Pages: 778
Authors: Francois Chollet
Categories: Computers
Type: BOOK - Published: 2022-09-13 - Publisher: Simon and Schuster

GET EBOOK

Deep learning from the ground up using R and the powerful Keras library! In Deep Learning with R, Second Edition you will learn: Deep learning from first princi
Hands-On Machine Learning with R
Language: en
Pages: 373
Authors: Brad Boehmke
Categories: Business & Economics
Type: BOOK - Published: 2019-11-07 - Publisher: CRC Press

GET EBOOK

Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning met
Deep Learning with R
Language: en
Pages: 259
Authors: Abhijit Ghatak
Categories: Computers
Type: BOOK - Published: 2019-04-13 - Publisher: Springer

GET EBOOK

Deep Learning with R introduces deep learning and neural networks using the R programming language. The book builds on the understanding of the theoretical and
Machine Learning with R
Language: en
Pages: 587
Authors: Brett Lantz
Categories: Computers
Type: BOOK - Published: 2013-10-25 - Publisher: Packt Publishing Ltd

GET EBOOK

Written as a tutorial to explore and understand the power of R for machine learning. This practical guide that covers all of the need to know topics in a very s
Advanced Deep Learning with R
Language: en
Pages: 339
Authors: Bharatendra Rai
Categories: Computers
Type: BOOK - Published: 2019-12-17 - Publisher: Packt Publishing Ltd

GET EBOOK

Discover best practices for choosing, building, training, and improving deep learning models using Keras-R, and TensorFlow-R libraries Key FeaturesImplement dee