Applied Deep Learning with Python

Applied Deep Learning with Python
Author :
Publisher : Packt Publishing Ltd
Total Pages : 317
Release :
ISBN-10 : 9781789806991
ISBN-13 : 1789806992
Rating : 4/5 (992 Downloads)

Book Synopsis Applied Deep Learning with Python by : Alex Galea

Download or read book Applied Deep Learning with Python written by Alex Galea and published by Packt Publishing Ltd. This book was released on 2018-08-31 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: A hands-on guide to deep learning that’s filled with intuitive explanations and engaging practical examples Key Features Designed to iteratively develop the skills of Python users who don’t have a data science background Covers the key foundational concepts you’ll need to know when building deep learning systems Full of step-by-step exercises and activities to help build the skills that you need for the real-world Book Description Taking an approach that uses the latest developments in the Python ecosystem, you’ll first be guided through the Jupyter ecosystem, key visualization libraries and powerful data sanitization techniques before we train our first predictive model. We’ll explore a variety of approaches to classification like support vector networks, random decision forests and k-nearest neighbours to build out your understanding before we move into more complex territory. It’s okay if these terms seem overwhelming; we’ll show you how to put them to work. We’ll build upon our classification coverage by taking a quick look at ethical web scraping and interactive visualizations to help you professionally gather and present your analysis. It’s after this that we start building out our keystone deep learning application, one that aims to predict the future price of Bitcoin based on historical public data. By guiding you through a trained neural network, we’ll explore common deep learning network architectures (convolutional, recurrent, generative adversarial) and branch out into deep reinforcement learning before we dive into model optimization and evaluation. We’ll do all of this whilst working on a production-ready web application that combines Tensorflow and Keras to produce a meaningful user-friendly result, leaving you with all the skills you need to tackle and develop your own real-world deep learning projects confidently and effectively. What you will learn Discover how you can assemble and clean your very own datasets Develop a tailored machine learning classification strategy Build, train and enhance your own models to solve unique problems Work with production-ready frameworks like Tensorflow and Keras Explain how neural networks operate in clear and simple terms Understand how to deploy your predictions to the web Who this book is for If you're a Python programmer stepping into the world of data science, this is the ideal way to get started.


Applied Deep Learning with Python Related Books

Applied Deep Learning with Python
Language: en
Pages: 317
Authors: Alex Galea
Categories: Computers
Type: BOOK - Published: 2018-08-31 - Publisher: Packt Publishing Ltd

GET EBOOK

A hands-on guide to deep learning that’s filled with intuitive explanations and engaging practical examples Key Features Designed to iteratively develop the s
Applied Deep Learning with Pytorch
Language: en
Pages: 254
Authors: Hyatt Saleh
Categories: Computers
Type: BOOK - Published: 2019-04-26 - Publisher:

GET EBOOK

Implement techniques such as image classification and natural language processing (NLP) by understanding the different neural network architectures Key Features
Advanced Applied Deep Learning
Language: en
Pages: 294
Authors: Umberto Michelucci
Categories: Computers
Type: BOOK - Published: 2019-09-28 - Publisher: Apress

GET EBOOK

Develop and optimize deep learning models with advanced architectures. This book teaches you the intricate details and subtleties of the algorithms that are at
Applied Deep Learning
Language: en
Pages: 425
Authors: Umberto Michelucci
Categories: Computers
Type: BOOK - Published: 2018-09-07 - Publisher: Apress

GET EBOOK

Work with advanced topics in deep learning, such as optimization algorithms, hyper-parameter tuning, dropout, and error analysis as well as strategies to addres
Deep Learning for Coders with fastai and PyTorch
Language: en
Pages: 624
Authors: Jeremy Howard
Categories: Computers
Type: BOOK - Published: 2020-06-29 - Publisher: O'Reilly Media

GET EBOOK

Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with